A compact fourth-order finite difference scheme for the steady incompressible Navier-Stokes equations
نویسندگان
چکیده
منابع مشابه
A Compact Fourth - Order Finite Difference Scheme for the Steady Incompressible Navier - Stokes Equations
We note in this study that the Navier-Stokes equations, when expressed in streamfunction-vorticity fonn, can be approximated to fourth--order accuracy with stencils extending only over a 3 x 3 square of points. The key advantage of the new compact fourth-order scheme is that it allows direct iteration for low~to-mediwn Reynolds numbers. Numerical solutions are obtained for the model problem of ...
متن کاملUpwind compact finite difference scheme for time-accurate solution of the incompressible Navier-Stokes equations
This article presents a time-accurate numerical method using high-order accurate compact finite difference scheme for the incompressible Navier–Stokes equations. The method relies on the artificial compressibility formulation, which endows the governing equations a hyperbolic–parabolic nature. The convective terms are discretized with a third-order upwind compact scheme based on flux-difference...
متن کاملVery high-order compact finite difference schemes on non-uniform grids for incompressible Navier-Stokes equations
This article presents a family of very high-order non-uniform grid compact finite difference schemes with spatial orders of accuracy ranging from 4th to 20th for the incompressible Navier–Stokes equations. The high-order compact schemes on non-uniform grids developed in Shukla and Zhong [R.K. Shukla, X. Zhong, Derivation of high-order compact finite difference schemes for non-uniform grid using...
متن کاملA High Order Numerical Scheme for Incompressible Navier-Stokes Equations
To solve the incompressible Navier-Stokes equations in a generalized coordinate system, a high order solver is presented. An exact projection method/fractional-step scheme is used in this study. Convective terms of the Navier-Stokes (N-S) equations are solved using fifthorder WENO spatial operators, and for the diffusion terms, a sixthorder compact central difference scheme is employed. The thi...
متن کاملA Third-Order Upwind Compact Scheme on Curvilinear Meshes for the Incompressible Navier-Stokes Equations
This paper presents a new version of the upwind compact finite difference scheme for solving the incompressible Navier-Stokes equations in generalized curvilinear coordinates. The artificial compressibility approach is used, which transforms the elliptic-parabolic equations into the hyperbolic-parabolic ones so that flux difference splitting can be applied. The convective terms are approximated...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal for Numerical Methods in Fluids
سال: 1995
ISSN: 0271-2091,1097-0363
DOI: 10.1002/fld.1650201003